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Outline

• Brief introduction to Cononline and Conoffline

• Validating transient behavior of model

‒Advection versus conduction in the casting

‒Compare CON1D with analytical result

‒Compare Conoffline with published strain 
gauge measurements

• Conoffline parametric study: effect of casting 
speed changes on metallurgical length
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CON1D: heat transfer and 
solidification model [2]

• In the casting direction, heat is 
transferred by:
‒ Conduction

‒ Advection

• Peclet number describes the ratio of 
these two effects

• For a typical caster, Pe is on the 
order of 103. Suggest conduction 
can be neglected.

• Governing equation: (LaGrange 
frame of reference)
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Conoffline [3]

• Consensor can run offline 
using recorded or invented 
casting data.

• Conoffline requires two Linux 
servers to run.

• Conoffline has been used to :
‒ Calibrate the model

‒ Tune the controller

• We would also like to use this 
to investigate the behavior of 
casters, particularly things like 
shell growth that cannot be 
easily measured.

Recorded or 
invented 
casting 

conditions
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Conoffline Monitor

Surface temperature

Shell thickness

Metallurgical length

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Zhelin Chen • 6

Comparison of CON1D result with 
analytical result: temperature 

• Analytical result from 
Dantzig, J. A., & 
Tucker, C. L. (2001): 

• By equation             we 
can transfer time into 
location.

• The error is 0.36%. 
Model is varified
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Comparison of Cononline with strain 
gauges: thermal shrinking [5]

• Predicted thermal linear expansion and measured roll loads for Burns 
Harbor caster are qualitatively match after the slow down.

• Cononline model is verified.
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Parametric simulation study 

• Conoffline is used to investigate the transient 
behavior of continuous casters.

• In this presentation, we focus on the effect of 
casting speed changes on metallurgical length on a 
thick-slab caster.

• And the performance of 3 different control algorithm 
(no control, speed table control, dynamic spray 
control) on surface temperature during speed 
changes.

• Based on standard conditions at Burns Harbor: 230 
mm thickness slab, low-carbon steel.
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Casting condition

• Simulations are based on Burns Harbor caster.

• Thickness: 260 mm

• Grade: Low-carbon (0.05%) steel

• Speed: sudden speed drop, speed change size 
varies

• Mold heat flux: varies with casting speed, based on 
an empirical correlation for a thin slab caster in [6]
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Examine effect of control method

• Both control method 
lead to similar 
metallurgical length 
response during 
speed change:

• Initial decrease is 
mostly response to 
speed, continuous 
decrease gradualy

Spray table control

No control
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Effect of casting speed

Final casting 
speed 

(m/min)

Casting 
speed drop

(m/min)

Slope of 
metallurgical 

length
(m/min)

Settling 
time
(s)

0.95 0.19 -0.193 1400
0.76 0.38 -0.382 1406
0.57 0.57 -0.567 1417

Settling time for the 
metallurgical length: 
‒ The time after which 

the metallurgical 
length is within 25 
mm of its final value

Settling time

Different speed drop 
from initial casting 
speed 1.14m/min. 
Constant water spray 
after speed drop
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K-factor estimate for ML settling time

• The shell thickness can be estimated by equation

• Then the settling time for ML during speed change can be 
estimated by:

• Where is slab thickness,     is settling time.

• For all speed drop simulation the initial casting speed is 
1.14m/min, and the spray water rate is constant after speed 
drop. The steady state K-factor for 1.14 m/min is 

2

24
L

K
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( )s t K t=

τL
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K-factor model

• The k-factor models would predict two things: 
‒ 1. the metallurgical length moves at exactly the difference 

between the two casting speeds after a sudden speed 
change. 

‒ 2. the transient in metallurgical length always takes exactly 
the same time

( ) ( )

2

c2 1

2 2

ML c c c2 21 1 2

2 2

c2 22

, 0
4

, 0
4 4

,
4 4

L
v t

K

L L
z t v t v v t

K K

L L
v t

K K


<


= + − < <



<


University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Zhelin Chen • 14

Settling time estimate for metallurgical 
length during speed drop
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Steady state K-factor calculation

The k-factor for all 
speed is very close 
regardless of final 
casting speed
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Sudden slow down in casting 
speed with constant spray

Surface temperature start to change 
when speed change happens

Following simulation is run under constant spray rate with speed drop from 
1.14 m/min to 0.95 m/min

Settling time
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Estimate for surface temperature 
settling time

• Settling time for surface temperature: the time after 
which the temperature stays within 10 °C of its final 
value.

• The settling time for surface temperature during speed 
drop can be estimated by equation:

• When the liquid steel with new casting speed reaches 
location z, the surface temperature at location z reach 
steady-state.  

( )

( )  settling time for surface temp at location z
 casting speed after speed change
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Settling time estimate for surface 
temperature during speed drop

Legend estimation simulation

Mold exit

Seg 6

Seg 12

Seg 16
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Dynamic spray control

• Spray table control: spray water rate changes immediately when speed 
changes.

• Intuitive idea: spray water rate changes gradually as speed changes, 
(i.e. spray water rate changes according to time instead of velocity).

• For Burns Harbor caster, the relation between spray water rate and 
casting speed is assumed to be:

• Above equation can be transferred to:

• Can be found solving the inverse of equation:

[ ] [ ]/ / 8 30 / minspray cSW l m row v m= − +

[ ] ( ) [ ]/ / 8 30 / minspray

z
SW l m row m

zτ
= − +

( )( )
t
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Dynamic spray control-simple 
case

• Dwell time calculation:
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For each spray zone, we can only 
have one flow rate, therefore, we 
select endlocation of each zone 
to calculate dwell time.
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Comparison of Dynamic spray control and 
Spray table control

Spray table 
control

Dynamic 
spray control



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Zhelin Chen • 21

Comparison of spray table control 
and dynamic spray control

Spray table 
control

Dynamic 
spray 

control
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Casting condition for thin slab 
caster [5]

• Simulations are based on Nucor Decatur steel mill.

• Thickness: 90 mm

• Grade: Low-carbon (0.05%) steel

• Speed: sudden speed drop, speed change size 
varies

• Mold heat flux: varies with casting speed, based on 
an empirical correlation in [6]

• Following simulation result is from [5]

[ ]( )0.5442
m cMW/m 1.197 m/minq v  = 
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Effect of shell thickness
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Settling time for surface 
temperature

• The model for thick-slab caster also suits for 
thin-slab caster.
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Settling time for Metallurgical 
length

• Here, settling time is 
the time after which the 
metallurgical length is 
within 25 mm of its final 
value

• K-factor models would 
expect these all to be 
equal, But there are 
small difference here
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Pinch-off 
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No “Pinch off” effect during 
speed up

no “pinching off,” and the rate of increase of the 
metallurgical length remains fairly constant
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Sequential speed changes
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Effect of control method
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Spray table control PI control
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Conclusion

• The response time for metallurgical length can be estimated by 
formula:

• The response time for surface temperature at location z can be 
estimated by formula:

• Dynamic spray control have better performance during sudden 
speed drop than spray table control.

• For  thin slab caster during big speed drop there are “pinch-off” 
phenomenon.

• During sequence speed change, PI control have better 
performance
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Future work

• Extend the parametric study for different 
thickness slab and different steel grade.

• Continue study pinch off problem

• Any other suggestions?

• Does anyone want us to include their caster 
in the study?
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